TRZY DROGI DO KWANTOWEJ GRAWITACJI.

Literatura naukowa.

 

Niemal cała powstała po roku 1991 literatura naukowa ważna dla fizyki teoretycznej dostępna jest w archiwum internetowym http://xxx.lanl.gov/. Warto podkreślić, że podczas gdy trzeba mieć wystarczające naukowe kwalifikacje, by móc cokolwiek na tej stronie opublikować, to dostęp do niej jest praktycznie nieograniczony. Artykuły ważne ze względy na zagadnienia poruszane w mojej książce znaleźć można głównie w archiwach hep-th i gr-qc. Odszukanie prac autorów, których wymieniam poniżej, pozwoli również prześledzić rozwój dziedziny.

Kolejnym ważnym źródłem wiedzy o fizycznych i matematycznych podstawach kwantowej grawitacji jest strona internetowa Johna Baeza „This Week's Finds in Mathematical Physics”, którą można znaleźć pod adresem http://math.ucr.edu/home/baez/TWF.html. Baez przygotował również doskonałe wprowadzenie do ogólnej teorii względności, dostępne pod adresem http://math.ucr.edu/home/baez/gr/gr.html. Czytelnik zainteresowany historią i podstawowymi problemami kwantowej grawitacji zapewne zainteresuje się również pracami Carlo Rovelliego 'Notes for a brief history of quantum gravity' (gr-qc/0006061), 'Quantum spacetime - what do we know?' (gr-qc/9903045) oraz moim artykułem 'The new universe around the next corner' w Physics World, grudzień 1999

Większość prac wymienianych niżej znaleźć można w archiwum xxx.lanl.gov. Bardziej szczegółowa lista lektur dostępna jest na stronie Johna Baeza.

Lee Smolin

 

[od wydawcy – ponieważ znajomość języka angielskiego jest i tak niezbędna do zapoznania się z przywoływanymi niżej publikacjami, resztę bibliografii pozostawiamy w języku angielskim]

 

Rozdział 2.

The discussion of the logic of observers inside the universe is based on F. Markopoulou, 'The internal description of a causal set: What the universe looks like from the inside', gr-qc/9811053, Commun. Math Phys. 211 (2000) 559-583

 

Rozdział 3.

The consistent histories interpretation is described in R.B. Griffiths, Journal of Statistical Physics 36 (1984) 219; R. Omnes, Journal of Statistical Physics 53 (1988) 893; and M. Gell-Mann and J.B. Hartle in Complexity, Entropy, and the Physics of Information, SFI Studies in the Sciences of Complexity, Vol. VIII, edited by W. Zurek (Addison Wesley, Reading, MA, 1990). The criticisms of Kent and Dowker are found in Fay Dowker and Adrian Kent, 'On the consistent histories approach to quantum mechanics', Journal of Statistical Physics. 82 (1996) 1575. Gell-Mann and Hartle comment in 'Equivalent sets of histories and multiple quasiclassical realms', gr-qc/9404013; J. B. Hartle, gr-qc/9808070. The reformulation of the consistent histories formulation in terms of topos theory, which emphasizes its relational aspects, is found in C.J. Isham and J. Butterfield, 'Some possible roles for topos theory in quantum theory and quantum gravity', gr-qc/9910005. Other relational approaches to quantum cosmology are found in L. Crane, Journal of Mathematical Physics 36 (1995) 6180; L. Crane, in Knots and Quantum Gravity, edited by J. Baez (Oxford University Press, New York, 1994); L. Crane, 'Categorical physics', hep-th/9301061; F. Markopoulou, 'Quantum causal histories', hep-th/9904009, Class. Quan. Grav. 17 (2000) 2059-2072; F. Markopoulou, ‘An insider's guide to quantum causal histories', hep-th/9912137, Nucl. Phys. Proc. Suppl. 88 (2000) 308-313; C. Rovelli, 'Relational quantum mechanics', quant-ph/9609002. International Journal of Theoretical Physics 35 (1996) 1637; L. Smolin, 'The Bekenstein bound, topological field theory and pluralistic quantum cosmology', gr-qc/950806.

 

Rozdział 4.

The process formulation of quantum theory was developed first by David Finkelstein, whose work is the main inspiration for this chapter. It is described in David Ritz Finkelstein, Quantum Relativity: A Synthesis of the ideas of Einstein and Heisenberg (Springer-Verlag, 1996). Rafael Sorkin has also pioneered the exploration of the role of causality in quantum gravity.

 

Rozdziały 5-8.

This is all standard material in classical general relativity and quantum field theory. Good introductions are N .D. Birrell and P .C. W . Davies, Quantum Fields in Curved Spacetime (Cambridge University Press, 1982); and Robert M. Wald, Quantum Field Theory in Curved Space- time and Black Hole Thermodynamics (University of Chicago Press, 1994).

 

Rozdziały 9 i 10.

There are several expositions of loop quantum gravity at a semi-popular or semi-technical level. They include Carlo Rovelli, 'Loop quantum gravity', gr-qc/9710008, Carlo Rovelli, 'Quantum spacetime; what do we know?', gr-qc/9903045; L. Smolin in Quantum Gravity and Cosmology, edited by Juan Perez-Mercader et al. (World Scientific, 1992); L. Smolin, 'The future of spin networks', in The Geometric Universe (1997), edited by S.A. Huggett et al. (Oxford University Press, 1998), gr-qc/9702030. The book by Rodolfo Gambini and Jorge Pullin, Loops, Knots, Gauge Theories and Quantum Gravity (Cam- bridge University Press, 1996) describes their approach to the subject.

The mathematically rigorous approach to loop quantum gravity is presented in Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao and Thomas Thiemann, 'Quantization of diffeomorphism invariant theories of connections with local degrees of freedom " Journal of Mathematical Physics 36 (1995) 6456, gr-qc/9504018; Abhay Ashtekar, Jerzy Lewandowski, 'Quantum field theory of geometry', hep-th/9603083; and T. Thiemann, 'Quantum spin dynamics I and II', gr-qc/9606089, gr-qc/9606090, Classical and Quantum Gravity 15 (1998) 839, 875 The original references for the Ashtekar-Sen formalism are in A. Sen, Physics. Letters 8119 (1982) 89; International Journal; of Theoretical Physics 21 (1982) 1; A. Ashtekar, Physical Review Letters 57 (1986) 2244; A. Ashtekar, Physical. Review D36 (1987) 1587.

 

Rozdział 11.

This is all standard material in string theory, to which Brian Greene's The Elegant Universe (Norton, 1999) is an excellent introduction. The best textbook is J. Polchinksi, String Theory (Cambridge University Press 1998).

 

Rozdział 12.

The original references for the holographic principle are Gerard 't Hooft, 'Dimensional reduction in quantum gravity', gr-qc/9310006. in Salan-festschrift, edited by A. Alo, J. Ellis, S. Randjbar-Daemi (World Scientific, 1993); and Leonard Susskind, 'The world as a hologram', hep-th/9409089, Journal of Mathematical Physics 36 (1995) 6377. Ideas closely related to the holographic principle were presented earlier by L. Crane in 'Categorical physics', hep-th/9301061 and hep-th/9308126 in Knots' and Quantum Gravity, edited by J. Baez (Oxford University Press, 1994) L. Crane, 'Clocks and categories: is quantum gravity of Mathematical Physics 36 (1995) 6180, gr-qc/algebraic?' Journal 9504038.

The Bekenstein bound was proposed in J.D. Bekenstein Lettere Nuovo Cimento 4 (1972) 737, Physical Review D7 2333 (1973), Physical Review D9 (1974) 3292. Ted Jacobsons paper deriving general relativity from the Bekenstein bound and the laws of thermodynamics is “Thermodynamics of spacetime: the Einstein equation of state' gr-qc/9504004 Physical Review Letters 75(1995). The derivation of the Bekenstein bound in loopquantum gravity is in L. Smolin 'Linking topological quantum field theory and nonperturbative quantum gravity', gr-qc/9505028, Journal of Mathematical Physics 36 (1995) 6417. Another very promising version of the holographic principle was proposed by Rafael Bousso in' A covariant entropy conjecture', hep-th/9905177, Journal of High-Energy Physics, 9907 (1999) 0004; R. Bousso, 'Holography in general space-times', hep-th/9906022, Journal of High-Energy Physics 9906 (1999) 028. A related theorem was proved in E. Flanagan, D. Marolf and R. Wald, hep-th/ 9908070. F. Markopoulou and I proposed a background independent version in 'Holography in a quantum spacetime', hep-th/9910146. In strong and weak holographic principles', hep-th/0003056 I review the arguments for and against the different versions of the principle.

 

Rozdział 13.

The view of the relationship between loop quantum gravity and string theory is based on L. Smolin, 'Strings as perturbations of evolving spin networks', hep-th/9801022; L. Smolin ,’A candidate for a background independent formulation of M-theory', hep-th/9903166; L. Smolin, 'The cubic matrix model and a duality between strings and loops', hep-th/ 006137.

There is an extensive literature on black holes in both string theory and loop quantum gravity. A sample of string theory papers is a A. Strominger and C. Vafa, Physics Letters 8379 (1996) 99, hep-th/9601029; C.V. Johnson, R.R. Khuri and R.C. Myers, Physics Letters 8378 (1996) 78, hep-th/9603061; J.M. Maldacena and A. Strominger, Physical Review Letters 77 (1996) 428, hep-th/9603060; C.G. Callan and Maldacena, Nuclear Physics 8472 (1996) 591, hep-th/9602043 Horowitz and A. Strominger, Physical Review Letters 77 (1996) hep-th/9602051.

A sample of papers on black holes in loop quantum gravity is: Carlo Rovelli, 'Black hole entropy from loop quantum gravity', gr-qc/9603063, Physical Review Letters 77 (1996) 3288; Marcelo Barreira, Mauro Carfora and Carlo Rovelli, 'Physics with nonperturbative quantum gravity: radiation from a quantum black hole', gr-qc/9603064, General Relativity and Gravity 28 (1996) 1293; Kirill Krasnov, 'On quantum statistical mechanics of a Schwarzschild black hole', gr-qc/9605047, General Relativity and Gravity 30 (1998) 53; Kirill Krasnov, 'Quantum geometry and thermal radiation from black holes', gr-qc/9710006, Classical and Quantum Gravity 16 (1999) 563; A. Ashtekar, J. Baez and K. Krasnov, 'Quantum geometry of isolated horizons and black hole entropy', gr-qc/0005126; A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, 'Quantum geometry and black hole entropy', gr-qc/9710007, Physical Review Letters 80 (1998) 904.

Non-commutative geometry is introduced in the book by Alain Non-commutative Geometry (Academic Press, 1994).

 

Rozdział 14.

The material described here is mostly related to my book, Life of the Cosmos. The discussion of space is drawn from S. Kauffman and L. Smolin, 'Combinatorial dynamics in quantum gravity', hep-th/9809161.